Dinamik doğrusal modellerin(DLM) istatiksel tarihi 1880 yıllarına dayanmakta olmasına rağmen 1960'lı yılların başlarında, dinamik sistemlerin izlenmesi ve kontrol edilmesi için mühendislikte geliştirilmiştir. DLM alanındaki ilk popüler uygulamalar, Apollo ve Polaris havacılık programlarında meydana gelmiştir ancak son yıllarda dinamik doğrusal modeller ve daha genel olarak durum uzay modelleri, biyolojiden ekonomiye, çok geniş bir alandaki uygulamalarla, büyük bir popülarite kazanmıştır. Bunların yanı sıra jeofizik bilimden genetiğe kadar mühendislik ve kalite kontrolü alanlarında kullanılmıştır. Dinamik doğrusal modelleri kullanan istatistiksel zaman serileri analizi, 1970-80'lerde büyük ölçüde gelişmiştir ve zamanla durum uzay modelleri(DUM) günümüzde ilgi odağı haline gelmiştir. Dinamik doğrusal modeller, durağan olmayan zaman serilerinin veya yapısal değişikliklerin modellenmesinde çok daha fazla esneklik sağlar ve genellikle daha kolay yorumlanmasını sağlar. Ayrıca daha genel durum alanı modelleri sınıfı, analizi Gauss olmayan ve doğrusal olmayan dinamik sistemlere uygular. Dinamik doğrusal modelleri tahmin etmek için farklı yaklaşımlar vardır bunlara örnek olarak en küçük kareler veya maksimum olabilirlik örnek olarak gösterilebilir.
Kalman (1960), Bayesian yaklaşımına uygun olduğunu söyleyebileceğimiz dinamik lineer modellerin bazı temel kavramlarının altını çizmektedir. İlk adım deterministten stokastik bir sisteme geçiyor; unutulmuş değişkenler, ölçüm hataları veya kusurlar nedeniyle daima mevcut olan belirsizlik olasılıkla açıklanmaktadır. Sonuç olarak, ilgili miktarlar (özellikle, sistemin t zamanında durumu) tahmini, mevcut bilgi dikkate alındığında, koşullu dağılımı hesaplanarak çözülür. Bu, Bayesci çıkarımda genel ve temel bir kavramdır. Dinamik doğrusal modeller, bir dinamik sistemin çıkışını, örneğin bir zaman serisini, rastgele hatalardan etkilenmeyen bir gözlemlenemeyen durum sürecinin bir fonksiyonu olarak tarif etme fikrine dayanmaktadır. Gizli değişkenler üzerinde koşullanarak, verilerdeki zamansal bağımlılığı modellemenin bu yolu, basit ve son derece güçlüdür. Dinamik doğrusal modellerin bir diğer önemli avantajı, hesaplamaların yineleyici bir şekilde yapılabilmesidir, yani tüm geçmişin depolanmasını gerektirmeksizin, ilgilinin koşullu dağılımları güncellenebilir. Bu, verilerin zaman içinde sıralı olarak gelmesi ve güncel çıkarımın gerekli olması durumunda son derece avantajlıdır ve ihtiyaç duyulan depolama kapasitesinin azaltılması, büyük veri setleri için daha da önemli hale gelmektedir.
Dinamik doğrusal modellerin(DLM) istatiksel tarihi 1880 yıllarına dayanmakta olmasına rağmen 1960'lı yılların başlarında, dinamik sistemlerin izlenmesi ve kontrol edilmesi için mühendislikte geliştirilmiştir. DLM alanındaki ilk popüler uygulamalar, Apollo ve Polaris havacılık programlarında meydana gelmiştir ancak son yıllarda dinamik doğrusal modeller ve daha genel olarak durum uzay modelleri, biyolojiden ekonomiye, çok geniş bir alandaki uygulamalarla, büyük bir popülarite kazanmıştır. Bunların yanı sıra jeofizik bilimden genetiğe kadar mühendislik ve kalite kontrolü alanlarında kullanılmıştır. Dinamik doğrusal modelleri kullanan istatistiksel zaman serileri analizi, 1970-80'lerde büyük ölçüde gelişmiştir ve zamanla durum uzay modelleri(DUM) günümüzde ilgi odağı haline gelmiştir. Dinamik doğrusal modeller, durağan olmayan zaman serilerinin veya yapısal değişikliklerin modellenmesinde çok daha fazla esneklik sağlar ve genellikle daha kolay yorumlanmasını sağlar. Ayrıca daha genel durum alanı modelleri sınıfı, analizi Gauss olmayan ve doğrusal olmayan dinamik sistemlere uygular. Dinamik doğrusal modelleri tahmin etmek için farklı yaklaşımlar vardır bunlara örnek olarak en küçük kareler veya maksimum olabilirlik örnek olarak gösterilebilir.
Kalman (1960), Bayesian yaklaşımına uygun olduğunu söyleyebileceğimiz dinamik lineer modellerin bazı temel kavramlarının altını çizmektedir. İlk adım deterministten stokastik bir sisteme geçiyor; unutulmuş değişkenler, ölçüm hataları veya kusurlar nedeniyle daima mevcut olan belirsizlik olasılıkla açıklanmaktadır. Sonuç olarak, ilgili miktarlar (özellikle, sistemin t zamanında durumu) tahmini, mevcut bilgi dikkate alındığında, koşullu dağılımı hesaplanarak çözülür. Bu, Bayesci çıkarımda genel ve temel bir kavramdır. Dinamik doğrusal modeller, bir dinamik sistemin çıkışını, örneğin bir zaman serisini, rastgele hatalardan etkilenmeyen bir gözlemlenemeyen durum sürecinin bir fonksiyonu olarak tarif etme fikrine dayanmaktadır. Gizli değişkenler üzerinde koşullanarak, verilerdeki zamansal bağımlılığı modellemenin bu yolu, basit ve son derece güçlüdür. Dinamik doğrusal modellerin bir diğer önemli avantajı, hesaplamaların yineleyici bir şekilde yapılabilmesidir, yani tüm geçmişin depolanmasını gerektirmeksizin, ilgilinin koşullu dağılımları güncellenebilir. Bu, verilerin zaman içinde sıralı olarak gelmesi ve güncel çıkarımın gerekli olması durumunda son derece avantajlıdır ve ihtiyaç duyulan depolama kapasitesinin azaltılması, büyük veri setleri için daha da önemli hale gelmektedir.